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Abstract

We consider a supply chain in which a single supplier with fixed capacity sells to
several independent retailers or manufacturers. The retailers have private information
about their individual markets (e.g., mean market demand), which influences the size
of their orders to the supplier. If the sum of all retailer orders exceeds the supplier’s
capacity, the supplier uses a pre-declared rule, which maps retailer’s orders to alloca-
tions. A broad class of allocation mechanisms are prone to manipulation by retailers,
as shown by Cachon and Lariviere (1999).

We first use a mechanism-design approach to obtain the optimal capacity-allocation
rule and pricing mechanism for the supplier. We then answer the following questions:
What level of capacity should the supplier provide to maximize its profit, given an
implementable profit-maximizing allocation policy? What forms do optimal (i.e., sup-
plier profit-maximizing) allocation polices take in typical business scenarios? Is sup-
plier profit sensitive to the type of allocation policy it employs? What are practical
ways of implementing the optimal allocation policy to reduce transaction costs? Our
analysis examines business scenarios for which the linear and proportional allocation
mechanisms are optimal. We also conclude that both supplier and supply-chain profit
can increase significantly if a manipulable allocation policy is replaced by the optimal
truth-telling allocation policy. Finally, in order to implement the optimal allocation
rule, we design an auction mechanism wherein retailers submit purchasing cost bids
for supplier capacity.

The authors acknowledge the support of the e-Enterprise center at Discovery Park, Purdue
University



1 Introduction

Global competition is motivating supply chains to be as “lean” as possible, particularly with

respect to inventory and capacity. This sometimes forces manufacturers or distributors to

allocate inventory or capacity among their customers. Capacity shortages also commonly

occur in situations in which capacity expansion is costly or when unexpected demand for a

product (e.g., “hot” Christmas toys) or product components (e.g., DRAM’s, LCD displays)

temporarily outstrips supplier capacity or inventory. Under these circumstances, the supplier

will often put its customers “on allocation”.

Although specific practices vary, being “on allocation” generally means that customers

get some or all of the quantity they ordered, the amount depending on metrics (e.g., past

sales, days-of-supply availability) instead of their willingness to pay. The auto industry

often uses fixed-price allocation schemes based, at least partially, on turn-and-earn. See

(Lawrence 1996, Sawyers 1999). Fixed-price turn-and-earn allocation policies are considered

“fair” by the automakers, but not by some auto dealers, as is evident from auto-dealer law

suits (Freeman, 1997). Price increases are another approach used to handle tight capacity.

For example, the price of flat-panel displays and DRAM chips rose by as much as 70% in the

first quarter of 2002 due to capacity shortages (CNN report, March 2002). Another (seldom

used) approach is to add capacity to meet the short-term increase in demand.

Management Science has provided some guidelines about the allocation of scarce capacity

and inventory in centralized supply chains. Cachon and Lariviere (1999b) is the one of

the first papers we know in the supply-chain literature to examine capacity allocation in a

decentralized supply chain. They consider a system consisting of a single manufacturer and

N independent retailers facing demand for a single product over a single time period. Each

retailer places an order with the manufacturer based on that retailer’s private information

about its market. The manufacturer has fixed capacity and only a probability distribution

on each retailer’s market. Cachon and Lariviere’s analysis, which takes the perspective of

the retailers, provides several counter-intuitive results. For example, they prove that if the

supplier uses a pre-announced system for allocating capacity at fixed prices, then the retailers

will over-order even if a Pareto allocation policy, which maximizes total retailer profits under

full information, is employed. Cachon and Lariviere also argue that supplier and supply-

chain profit can increase if a truth-telling allocation mechanism is replaced by a manipulable
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one.

Our research examines the same basic model, but from the perspective of the supplier,

who often has the ability to dictate policy when total retailer orders exceed its capacity or

inventory. Our goal is to provide insights into the decentralized allocation problem from a

supply-chain perspective. In the economics literature, Harris and Raviv (1981) and Maskin

and Riley (1989) have analyzed supplier profit-maximizing allocation policies in a decen-

tralized setting. Like Maskin and Riley (1989), we first characterize the optimal allocation

policy that will maximize supplier profit under general assumptions about retailer revenue

functions. This optimal allocation policy is shown to generate non-negative profits for the

individual retailers and, hence, considered implementable.

We then examine the following questions:

1. What level of capacity should the supplier provide to maximize its profit, given an

implementable profit-maximizing allocation policy?

2. What forms do optimal (i.e., supplier profit-maximizing) allocation polices take in typ-

ical business scenarios?

3. Is supplier profit sensitive to the type of allocation policy it employs?

4. Are there practical ways of implementing the optimal allocation policy to reduce trans-

action costs?

To answer these questions, like Cachon and Lariviere, we consider a one-period business

scenario in which a single supplier with fixed capacity or inventory, sells to N ≥ 2 indepen-

dent retailers or manufacturers, henceforth labeled retailers, facing independent demands or

requirements. Each retailer has private information about its own market (e.g., forecast of

market demand, market potential) but not about the markets of any other retailer. The

retailers are assumed to place orders based on a price schedule provided by the supplier,

whose only information about each retailer’s market is a probability distribution on a single

information parameter. If the sum of retailer orders exceeds the available capacity or inven-

tory, henceforth labeled available capacity, then the supplier uses a pre-announced policy for

mapping retailer orders to their corresponding allocations. In contrast to Cachon and Lar-

iviere, who assume fixed-price allocation, the optimal allocation policy uses variable prices.

Indeed, it employs variable prices to induce truth-telling. In further contrast to Cachon

and Lariviere, our analysis shows that both supplier and supply-chain profit can increase
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significantly if a manipulable allocation policy is replaced by the optimal truth-telling al-

location policy. Section 2 of the paper provides a review of prior literature. We provide

the model framework and analysis of the optimal allocation policy in section 3. We also

derive the supplier optimal capacity in section 3. Section 4 provides structural results on

the optimal allocation policy for two specific business scenarios. A numerical study with

sensitivity analysis of the optimal allocation policy is provided in section 5, followed by an

auction implementation procedure in section 6. We conclude with managerial insights in

section 7.

2 Literature Review

Models for allocating inventory have a long history in supply-chain management. The earliest

article, and, by far, the largest number or articles involve allocation in centrally managed

systems. A growing literature examines allocation in decentralized systems, usually with

information asymmetry. In what follows, we will cite the most closely related work.

For centrally managed supply chains, it is intuitively obvious that whenever allocations

are necessary, they should be made so that the marginal expected consequences (e.g., cost,

profit) are the same across all those entities demanding inventory. However, except for

the simplest supply chains, it is quite difficult to identify efficient techniques to accomplish

this goal. Allen (1958) showed that for a system of N non-identical newsvendors facing

normally distributed demand with identical proportional shortage costs, that total expected

system shortage cost is minimized by allocating inventory so that the retailers’ normalized

net inventories are equalized. If the retailers have identical customer-demand distributions,

then such allocations equalize the retailers’ stock-out probabilities. For identical retailers, of

course, a balancing allocation equalizes retailer net inventories.

Models for more complicated systems either illustrate the computational difficulties when

“balancing allocations” can’t be achieved (e.g., Clark and Scarf, 1960) or assume that a

“balancing allocation” - whose definition varies from model to model - can always be made.

See, for example, Eppen and Schrage (1981), Federgreun and Zipkin (1984), Jonsson and

Silver (1987), Schwarz (1989), Chen and Zheng (1994), Kumar, et al. (1995). Several authors

(e.g., Topkis 1969, Ha 1997, Deshpande et al. 2002) have studied systems for allocating

inventory with sequentially arriving customers of different priority classes in a centralized

setting.

3



Several authors have also studied inventory-balancing itself. Most recently, McGavin,

et al. 1997, examine the optimality of equalizing the retailers’ normalized (with respect

to the subsequent period’s demand distributions) inventories in a one-warehouse N-retailer

distribution system facing stochastic demand for a single product over T time periods. They

demonstrate that this type of balancing is optimal for some cost functions for not for others.

More recently, several papers have examined the management of decentralized serial

supply chains. Although serial systems do not require allocation per se - since there is only

one buyer for each supplier - their analysis provides a framework for understanding allocation

in more complex decentralized supply chains. For such systems, it is well known that double

marginalization necessitates the use of some mechanism either to achieve first-best (i.e., the

same performance level as a centralized system) or to improve performance for the buyer,

supplier, or both.

Cachon and Lariviere (1999b) examine a capacity-allocation model identical to ours ex-

cept that the retailers’ per-unit purchase price is fixed. They demonstrate that such fixed-

price allocation policies can lead the retailers to order more than they desire in order to

receive a favorable allocation. In particular, Cachon and Lariviere prove that Pareto alloca-

tion mechanisms, which maximize total retailer profit under full information, induce retailer

over-ordering if information is hidden. They also demonstrate several non-intuitive results,

among them that “supplier and supply-chain profits can increase when a truth-inducing

mechanism is replaced by a manipulable mechanism that creates order inflation.” They fur-

ther demonstrate that a truth-telling mechanism that maximizes total retailer profit does

not exist if prices are fixed.

Our perspective is that of the supplier, and our focus is on the design of allocation policies

that will maximize supplier profit. As expected, these policies involve variable prices. In

particular, we develop an incentive-compatible price-quantity schedule for the supplier that

induces retailer truth-telling, and, thereby, maximizes supplier profit. Hence, our analysis

and insights are complementary to those of Cachon and Lariviere. For example, whereas

Cachon and Lariviere demonstrate that fixed-price allocation policies are manipulable, we

demonstrate that variable-price policies can induce truth telling. Other differences are de-

scribed in our numerical study.

In related work, (1999a), Cachon and Lariviere examine “turn-and-earn” allocation, a

fixed-price allocation scheme based on past sales. Cachon and Lariviere demonstrate, among
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other things, that turn-and-earn does not generally coordinate the system.

Lee and Whang (1996) extend Clark and Scarf’s model of a centrally managed serial sys-

tem to show that a mechanism based on consignment, delivery warranties, and an additional

backorder-penalty cost at each supplier site can be used to achieve first-best performance

using only locally available information. Porteus (2000) demonstrates that such a policy can

be implemented using “responsibility tokens”. Chen (1999) designs incentive schemes based

on payments between echelon division managers and the firm rather than between echelon

managers (as in Lee and Whang) for a serial system with information delays. It is important

to note that all of these schemes require a central planner to both determine and enforce the

coordinating mechanism.

Cachon and Zipkin (1999) examine an independently managed 2-stage serial system in

which both the manufacturer and the retailer choose periodic-review base-stock policies that

minimize their own individual expected costs; i.e., a 2-stage supply chain without a central

planner to determine and enforce coordination as above. They examine two games, one

based on tracking echelon inventory, the other based on individual inventories; and show

that while these games almost always have a Nash equilibrium, it differs from that of the

optimal (centralized) policy.

Cachon and Lariviere (2001) examine contracting between a manufacturer and a supplier

that is the sole source of a critical component. They demonstrate that optimal supply-chain

performance requires the manufacturer to truthfully share its initial forecast of customer

demand with its supplier, but that it has an incentive to inflate its forecast so that the

supplier will build more capacity. The supplier is aware of this bias, and, so, may not trust

the manufacturer’s forecast. See Tsay, Nahmias, and Agrawal (1999) and Cachon (2002) for

a more complete review of supply-chain coordination.

Corbett (2001) examines contracting between a single buyer who places orders using a

(Q,r) policy on an independently managed supplier under two different types of information

asymmetry. Corbett’s analysis concludes that in the absence of a central planner with full

information, neither party can induce jointly optimal behavior without sacrificing its own

profits. An adverse selection inventory model with demand information asymmetry in a

single-period context has been considered by Mallik and Harker (1999).

Adverse selection models due to information asymmetry between principal and agents

have been well studied in economics (See Fudenberg and Tirole, 2000). The classic references
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on adverse selection models and signaling include Akerlof 1970, Rothschild and Stiglitz 1976,

and Spence 1974. Our model also draws on classical auction theory as described in the

seminal papers by Vickrey (1961), Myerson (1981), Riley and Samuelson (1981), and Milgrom

and Weber (1981). See Klemperer (1999) for a more recent review on the theory of auctions.

The use of auctions for revenue management has been described by Vulcano, van Ryzin and

Maglaras (2001).

The use of auctions for allocating resources such as securities is described by Harris

and Raviv (1981). They derive the optimal allocation mechanism for a supplier, under the

assumption of a unitary demand function, and a uniformly-distributed marginal willingness-

to-pay for each retailer. An optimal auction procedure, where retailers submit quantity bids,

was derived by Maskin and Riley (1989), under assumptions similar to ours. We attribute

Theorem 2 of our paper, which describes the optimal allocation mechanism, to Maskin and

Riley (1989).

However, our paper differs from Maskin and Riley (1989) in several ways: First, we also

consider the supplier’s capacity-choice problem conditional on the optimal allocation mecha-

nism. Second, since our goal is to provide insights into the decentralized allocation problem

from a supply-chain perspective, we describe the structure of the optimal allocation mecha-

nism for several business scenarios. We numerically compare the performance of the optimal

allocation mechanism to C&L’s fixed-price manipulable allocation mechanism, in order to

illustrate the benefit of the optimal allocation mechanism. We also compare the supply-chain

profits under the optimal centralized and decentralized settings. Finally, Theorem 1 of our

paper is a generalization of Maskin and Riley’s results because it provides necessary and

sufficient conditions for an implementable allocation policy.

Auctions are commonly used in procurement in which multiple suppliers submit bids

to a single buyer. See Dasgupta and Spulber (1989/90) and the recent paper by Chen

(2001) for an analysis of supply contracts for procurement. Elmaghraby (2000) provides an

excellent review of procurement contracts. Our paper can be considered as an inverse of the

procurement problem since we have a single seller selling to multiple buyers.

3 Model Framework and Analysis

In this section, we first formulate our model of a supply chain with one supplier with fixed

capacity supplying N ≥ 2 retailers in a single-period setting. We then derive the supplier’s
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optimal pricing-and-allocation policy. The optimal capacity-choice decision is then derived

for the supplier based on the optimal pricing-and-allocation policy.

3.1 Model formulation and the optimal allocation policy

Let K be the supplier’s fixed capacity. The supplier recognizes that the order from each

individual retailer depends on the price it charges and on retailer’s private information

parameter, which is hidden from the supplier. We model this private retailer information by

the scalar parameter θ. Although θ is not known to the supplier, we assume that the supplier

has a prior, with a density f(·) on the support [θ, θ]. Thus, the revenue function for retailer

i, denoted Ri(qi, θi), is a function of its allocated quantity qi and its private information

parameter θi. Retailer i observes its θi, but not the values of other retailers, labeled θ−i.

The retailer’s profit equals its revenue Ri(qi, θi) minus the purchasing cost (for qi units) from

the supplier.

We make the following assumptions for our analysis.

Assumption 1: Each retailer’s revenue function, Ri, is concave in the quantity allocated

to the retailer qi. Hence RQQ ≤ 0.

Assumption 2: Rθ > 0, RθQ > 0, andRθQQ ≥ 0.

Assumption 3: Define H(θ) = 1−F (θ)
f(θ)

(reciprocal of Hazard rate). H ′(θ) ≤ 0 and RQθθ≤0.

Assumption 1 states that retailer’s revenue function is marginally decreasing in its al-

location. Assumption 2 states that higher θ indicates higher revenues for each retailer, all

other things being equal; and that its marginal revenues (with respect to θ) for the retailer

are increasing and convex in its allocation. Assumption 3 states that the inverse of the

hazard rate is decreasing in θ. This assumption is satisfied by a broad class of probability

distributions, such as the uniform, normal, exponential, logistic and chi-squared (see Barlow

and Proschan, 1975). Also, the marginal revenues with respect to Q are increasing concave

in θ.

We use the mechanism-design approach (Fudenberg and Tirole, 2000) to formulate the

supplier’s problem. In this direct revelation mechanism, the supplier asks the retailers to re-

veal their type θi, and implements the pricing-and-allocation policy {P (θi), Q(θi, θ−i)} based

on the types revealed by the retailers. Here Q(θi, θ−i) represents the quantity-allocation

function while P (θi) represents the retailer purchasing cost based on the retailer’s announce-

ments of their individual type θ. For example, when the private information parameter is
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the forecast of market demand, each retailer is asked to announce its forecast to the supplier.

The pricing-and-allocation policy is then implemented based on the forecast announcement

by all retailers. The contracting steps are as follows.

1. The supplier offers a pricing-and-allocation policy {P (θi), Q(θi, θ−i)}, linking the quan-

tity allocation qi and purchase cost pi to the retailers announcement of their individual

types.

2. Each retailer chooses a type to announce (which may or may not be its actual type θi)

that maximizes its individual profit.

3. The quantity-allocation mechanism Q and the purchasing cost function P is imple-

mented based on the set of types announced by all retailers.

Each retailer’s decision is to choose a type to announce to the supplier, given the supplier’s

pricing-and-allocation policy. The objective for each retailer can then be stated as follows:

max
x

πi(x, θi) = E−i[R(Q(x, θ−i), θi) − P (x)] (1)

The retailer’s decision is to choose a parameter x ∈ [θ, θ] to maximize its expected profits.

Note that revenues are dependent on the amount allocated, Q(x, θ−i), and the retailer’s type

θi. The purchase cost also depends on the type announced P (x). Note that the expectation

is taken over the types of other retailers θ−i. The mechanism {P (θi), Q(θi, θ−i)} is incentive

compatible if it is optimal for each retailer to announce its true type to the supplier; i.e.

x∗ = θi.

The supplier has a wide choice of pricing-and-allocation mechanisms to choose from.

From the revelation principle (see Fudenberg and Tirole, 1991, p256.), the supplier can,

without any loss in profits, restrict its attention to truth-telling mechanisms, where it is

optimal for each retailer to announce his true information parameter θi. At the Bayes-Nash

equilibrium of the direct revelation game, truth-telling by any retailer is a best response

to truth-telling by all other retailers. A pricing-and-allocation policy is implementable if

it is incentive compatible, and provides non-negative profits to the retailers. The following

theorem states the condition under which a mechanism {P (θi), Q(θi, θ−i)} is implementable.

Theorem 1 The pricing-and-allocation mechanism {P (θi), Q(θi, θ−i)} is incentive compat-

ible if and only if conditions (2) and (3) hold. In addition, condition (3) is a sufficient
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condition to guarantee non-negative profits for the retailers.

∫ θi

x
E−iRθ(Q(x, θ−i), θ)dθ ≤

∫ θi

x
E−iRθ(Q(θ, θ−i), θ)dθ (2)

P (θi) = E−i[R(Q(θi, θ−i), θi) −
∫ θi

θ
Rθ(Q(θ, θ−i), θ)dθ] (3)

Proof: Provided in the appendix.

Note that Theorem 1 provides necessary and sufficient conditions for an allocation policy

to be implementable. The necessary condition for implementability, equation (3), was first

established by Maskin and Riley (1989). A sufficient condition for (2) is RθQQ′ ≥ 0. Since

RθQ > 0 (assumption 2), note that condition (2) is always satisfied if Q(·) is non-decreasing

in θ. We will assume throughout the paper that Q(·) is non-decreasing in θ. As shown later,

assumptions 2 and 3 are sufficient to guarantee that the optimal allocation is non-decreasing

in the announcement θ.

Let Rs
i denote the expected payments received by the supplier from retailer i. Then

Rs
i = Ei(P (θi)) = E[R(Q(θi, θ−i), θi) − Rθ(Q(θi, θ−i), θi)H(θi)]

Thus, the supplier’s allocation problem can be stated as:

V (K) = max
Q

E[
n∑

i=1

R(Q(θi, θ−i), θi) − Rθ(Q(θi, θ−i), θi)H(θi)] (4)

subject to
n∑

i=1

Q(θi, θ−i) ≤ K (5)

Under the stated assumptions, the KKT first-order conditions are sufficient for the sup-

plier’s problem. The following theorem establishes the solution to the optimal allocation

policy for the supplier.

Theorem 2 (Maskin and Riley, 1989) The optimal allocation policy Q∗(θi, θ−i) is obtained

as the solution to the following conditions

RQ(Q(θi, θ−i), θi) − RQθ(Q(θi, θ−i), θi)H(θi) = λ (6)

λ(
n∑

i=1

Q(θi, θ−i) − K) = 0 (7)

λ ≥ 0 (8)
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Proof: See Maskin and Riley (1989).

Conditions (6)-(8) may be interpreted as follows. Equation (6) states that the marginal

revenues for each retailer minus the marginal information costs for the supplier should be

equal to the shadow price of the fixed capacity. Equations (7) and (8) state that the shadow

price of the supplier’s fixed capacity is positive if capacity is tight, and zero otherwise.

Notice that a Pareto allocation policy, which maximizes sum of all retailer revenues, would

allocate capacity to equalize marginal revenues for all retailers. Hence, the presence of

marginal information rents distinguishes the supplier’s optimal allocation policy from the

Pareto allocation policy.

Note that in the above formulation we have ignored the non-negativity constraints on

the allocation Q(·). In many situations it may be desirable to add this constraint to the

supplier’s problem.

Q(θi, θ−i) ≥ 0 (9)

Correspondingly, equation (6) should be modified to:

RQ(Q(θi, θ−i), θi) − RQθ(Q(θi, θ−i), θi)H(θi) = λ − µi (10)

where

µi ≥ 0 and µiQ(θi, θ−i) = 0 (11)

In deriving the optimal allocation policy, we had assumed that Q∗(·) is increasing in the

information parameter θ. A sufficient condition for Q∗(·) to be increasing in θ is V (K) be a

supermodular function (i.e, δ2V/δQδθ ≥ 0). Now

δ2V

δQδθ
= RQθ(Q(θi, θ−i), θi) − H(θ)RQθθ(Q(θi, θ−i), θi) − H ′(θ)RQθ(Q(θi, θ−i), θi) ≥ 0

Hence, assumptions 2 and 3 guarantee that V (·) is supermodular, implying that the Q∗

obtained from conditions in Theorem 2 is increasing in θ.

3.2 Optimal Capacity Choice

In the first stage of the problem, the supplier chooses its capacity, anticipating how the

retailers will behave under the optimal pricing-and-allocation policy. We assume that the

supplier incurs a unit cost of c for investing in capacity. Given the optimal pricing-and-

allocation policy, the supplier’s capacity-choice problem can be stated as follows.

max
K

V (K) − cK (12)
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where

V (K) = max
Q

E[
n∑

i=1

R(Q(θi, θ−i), θi) − Rθ(Q(θi, θ−i), θi)H(θi)] (13)

subject to (5) and (9).

The following theorem establishes the structure of the supplier’s profit function V (K).

Theorem 3 The supplier’s revenue function V (K) is concave in its capacity choice K.

Proof: Under assumptions 1-3, it is easy to show that the supplier’s objective is to maximize

a concave function subject to a linear constraint on the capacity choice. Hence V (K) is con-

cave in the capacity choice K. 2

The implication of Theorem 3 is that the optimal capacity can be easily found by a

simple search mechanism such as golden section search. Let K∗ be the supplier’s optimal

capacity choice. The following theorem compares this capacity choice under information

asymmetry to the centralized capacity choice under no-information asymmetry.

Theorem 4 The supplier’s optimal capacity choice, K∗, under information asymmetry is

less than or equal to the capacity choice K∗
c which maximizes centralized supply-chain profits

(with no information asymmetry).

Proof: Provided in the appendix.

The intuition on Theorem 4 is as follows: Given truth-telling, by under-investing in capacity,

the supplier creates increased competition among the retailers, thereby squeezing information

rents from them.

4 Structural results for the optimal allocation policy

In this section we explore the structure of the optimal allocation policy. In particular, we

are interested in conditions under which linear and proportional allocation mechanims are

optimal for the supplier. For each of these allocation mechanisms we then describe stylized

business scenarios which satisfy these optimality conditions. We also introduce a generalized

version of linear allocation, and describe conditions under which it is optimal.

11



4.1 The Linear Allocation Mechanism

The Linear allocation mechanism is defined as follows:

Definition 1 Linear Allocation Mechanism Index the retailers in decreasing order of

their order quantities,i.e. q1 ≥ q1 ≥ ... ≥ qN . Retailer i is allocated Qi(q, n), where

Qi(q, n) = qi −
1

n
max{0,

n∑

i=1

qi − K} if i ≤ n

Qi(q, n) = 0 if i > n

where n is the largest integer such that Qi(q, n) ≥ 0 for all i.

The linear allocation mechanism awards each retailer his order minus a common deduc-

tion. The common deduction (defined for retailers who get positive allocations) is equal to

the difference by which sum of retailer orders exceeds capacity divided by the number of

retailers who get positive allocations.

Also, define G(Q, θi) = RQ(Q, θi) − RQθ(Q, θi)H(θi)

Theorem 5 If there exists a function τ (θi) such that τ (θ∗) = 0 for a fixed type θ∗ and

G(Q, θi) = G(Q − τ (θi), θ
∗), then the linear allocation policy is optimal for the supplier; i.e.,

Q∗
i (θi) = Q∗

i (θ
∗) + τ (θi) =

K

n
+ τ (θi) −

∑n
i=1 τ (θi)

n

Note that the above condition on G(·, ·) is satisfied if the marginal revenues satisfy the

property RQ(Q, θi) = RQ(Q − τ (θi), θ
∗), and the inverse Hazard rate satisfies H(θi) = 1

τ ′(θi)
.

Theorem 5 can be viewed as a refinement of Theorem 2, where it adds sufficient condi-

tions under which the linear allocation rule is optimal. Theorem 5 provides the intuition

that if the information-rent adjusted marginal revenues are linearly shiftable functions of the

parameter θ then the linear allocation scheme is optimal.

Example 1: Retailers face downward-sloping linear demand

Consider the problem when “symmetric” (i.e., identical cost structures and demand func-

tions) retailers face a downward sloping linear demand, i.e.,

r(q) = θ − q (14)
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where r(q) is the market-clearing price charged by retailers to sell q units. The intercept of

the demand curve is retailer’s private information and not known to the supplier. Thus, for

a given allocation q, the retailer’s revenue function is given by

R(q, θ) = q(θ − q) (15)

It is easy to verify that this revenue function satisfies assumptions 1 and 2. The following

corollary to Theorem 5, as shown by Maskin and Riley (1989), establishes the optimal

allocation policy for the supplier.

Corollary 1 (Maskin and Riley, 1989) If retailers face deterministic downward sloping lin-

ear demand, then the linear allocation mechanism is optimal for the supplier.

It is interesting to note that in this business scenario - but with fixed prices - Cachon and

Lariviere prove that linear allocation is manipulable. It is also interesting to note that in

their numerical study, under the assumption that the supplier has chosen its capacity based

on truth-telling, Cachon and Lariviere observe supplier profit increases as much as 19% if

uniform allocation - which induces truth-telling - is replaced by linear allocation, which in-

duces over-ordering. In our numerical study, using an incentive-compatible linear allocation

policy, supplier profits increase a minimum of 842% over the non-incentive compatible im-

plementation of the linear-allocation policy considered by Cachon and Lariviere. Thus, the

optimal pricing-and allocation policy leads to dramatic increase in profits for the supplier

compared to the policy considered by Cachon and Lariviere.

Example 2: Retailers are Linearly Shiftable Newsvendors

Consider the scenario in which symmetric retailers are newsvendors. It is assumed that

one of the parameters of the newsvendor demand distribution is each retailer’s private infor-

mation(e.g., mean demand). Let f(x, θ) denote the demand distribution for the newsvendor,

with θ over the range [θ, θ]. The revenue function for the retailers based on the quantity

allocated Q and the information parameter θ is given by

R(Q, θ) = r[
∫ Q

∞
xf(x, θ)dx +

∫ ∞

Q
Qf(x, θ)dx] (16)

Theorem 5 tells us that if the newsvendor demand distribution belongs to the family of

distributions that can be linearly shifted by a function of θ, then the linear allocation policy
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is optimal for the supplier. The linear shiftability condition is equivalent to the marginal

revenues for the retailers differing by a linear parameter shift. In addition, the condition

on H guarantees that the information rents are also linearly shiftable by the parameter θ.

Examples of such distributions includes the normal distribution.

Corollary 2 If retailers are newsvendors with a normal demand distribution with mean θ,

and an exponential prior on θ, then the conditions of Theorem 5 are satisfied. Hence, the

linear allocation mechanism is optimal.

The linear allocation mechanism can be generalized as follows:

Definition 2 Generalized Linear Allocation Mechanism Index the retailers in de-

creasing order of their order quantities,i.e. q1 ≥ q1 ≥ ... ≥ qN . If capacity is tight, Retailer

i is allocated Qi(q, n), where

Y (Qi(q, n)) = Y (qi) − λ

Qi(q, n) = 0 if i > n

where λ is a constant, and n is the largest integer such that Qi(q, n) ≥ 0 for all i.

Generalized linear allocation mechanism first transforms the order quantities using the

function Y (·), and then applies the linear allocation policy. Note that the linear allocation

mechanism is a special case of the generalized-linear allocation mechanism, where Y (q) = q.

Example 3: Retailers face general downward-sloping demand

Consider the problem when symmetric retailers face general downward-sloping demand,

i.e.

r(q) = θ − v(q) (17)

where r is the market-clearing price charged by retailers to sell q units, and v(·) is an

increasing function of q. The intercept of the demand curve is retailer’s private information

and not known to the supplier. Thus, for a given allocation q, the retailer’s revenue function

is given by

R(q, θ) = q(θ − v(q)) (18)

The following corollary follows immediately:

Corollary 3 If retailers face general deterministic downward-sloping demand, then the gen-

eralized linear allocation mechanism is optimal for the supplier, with Y (q) = v(q) + qv′(q).

14



For example, if the market clearing-price has the form r(q) = θ − q2, then a generalized

linear allocation mechanism with Y (q) = 2q2 is optimal for the supplier.

4.2 The Proportional Allocation Mechanism

Definition 3 Proportional Allocation Mechanism Retailer i is allocated Qi(q) where

Qi(q) = min{qi,
Kqi∑N
i=1 qi

}

The proportional allocation policy gives each retailer a common fraction of his order if

capacity binds. The common fraction is equal to the total capacity divided by sum of all

retailer orders.

Theorem 6 If there exists a function τ (θi) such that τ (θ∗) = 1 for a fixed type θ∗ and

G(Q, θi) = G( Q
τ(θi)

, θ∗), then the proportional allocation policy is optimal for the supplier; i.e,

Q∗
i (θi) = τ (θi)Q

∗
i (θ

∗) =
τ (θi)K∑

τ (θi)

Note that the above condition on G(·, ·) is satisfied if RQ(Q, θi) = RQ( Q
τ(θi)

, θ∗), and

H(θi) = τ(θi)

τ ′(θi)
.

Example 4: Retailers are Scalable Newsvendors

Theorem 6 states that if the newsvendor demand distribution belongs to the family of

distributions that can be scaled by a function of θ, then the proportional allocation policy is

optimal for the supplier. The uniform, exponential and gamma distributions, for example,

all satisfy this condition. The scalability condition states that the marginal revenues for

retailers differ by a scale parameter. In addition, the condition on H guarantees that the

information rents are also scalable by the parameter θ.

Corollary 4 If retailers are newsvendors with a uniform demand distribution on [0, θ], and

a Pareto supplier’s prior on θ, then the conditions of Theorem 6 are satisfied. Hence, the

proportional allocation mechanism is optimal.
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5 Numerical study

The starting point for our numerical study is a comparison of the performance of the optimal

(i.e., supplier profit-maximizing) variable-price linear-allocation policy with the manipulable

fixed-price allocation policy examined by Cachon and Lariviere (1999b) in their numerical

study (Table 2, page 1102). We then examine the sensitivity of the optimal allocation policy

to different model parameters. The initial parameters used are identical to those used by

Cachon and Lariviere (1999b). Specifically, we assume N symmetric retailers (i.e., identical

cost structures and linear demand function Q(P ) = θ − P ), where P is the unit price

each retailer charges its customers. Each retailer’s market potential, θ, is that retailer’s

private information. N = 5 retailers are independently assigned to be one of five types

θ ∈ {4, 5, 6, 7, 8}, with probabilities {0.05, 0.25, 0.4, 0.25, 0.05}, respectively.

For each parameterization, let πC represent supply-chain profit for the centralized system,

for which a Pareto allocation policy is optimal (see Cachon and Lariviere, page 1095); let KC

be the corresponding optimal centralized supplier capacity. Let πDi, i = T,M , represent the

supply-chain profit for the decentralized system under allocation policy i, where i = T is the

optimal truth-telling variable-price linear-allocation policy, and i = M is the manipulable

fixed-price linear-allocation policy considered by Cachon and Lariviere. Let KDi, i = T,M

be the corresponding optimal supplier capacity; and let πS
Di, i = T,M , represent the decen-

tralized supplier profit.

The performance measures we examine are: (1) the decentralization penalty, πi
P enalty =

100(πC −πDi)/πC; that is, the percentage reduction in maximum possible supply-chain profit

from using allocation policy i = T or M in a decentralized system; (2) the supplier percentage

of supply-chain profit, πDi
Supplier = 100πS

Di/πDi; and (3) the decentralized supplier capacity

ratio, KDi/C = 100KDi/KC .

5.1 Comparing the Optimal and the Manipulable Allocation Mech-

anisms

Columns 2 and 3 of Table 1 provide the optimal centralized profit, πC, and supplier capacity,

KC , respectively, for the supplier’s per-unit capacity cost, c, specified in Column 1. Columns

4-6 report the performance of the optimal (i.e., supplier profit-maximizing) variable-price

linear-allocation policy; columns 7-9, the performance of Cachon and Lariviere’s manipulable

16



fixed-price linear-allocation policy. Column 10 reports the percentage increase in supplier

profit in changing from the manipulable policy to the decentralized optimal policy.

Most important, observe (Col. 10) that the optimal allocation policy increases the sup-

plier’s profit a minimum of 842% over the manipulable policy considered by Cachon and

Lariviere. More specifically, Column 5 reports that the optimal allocation policy provides

the supplier with 74.1 to 79.1% of total supply-chain profits (an average of 76.9%) versus the

manipulable scheme’s share of 0.0 to 8.3% (an average of 1.3%) reported in Column 8. In

addition, note (in columns 4 and 7) that in moving from the manipulable to the truth-telling

policy, the decentralization penalty is reduced in 13 and increased in 22 of the 35 param-

eterizations. Since in the optimal allocation policy, the supplier maximizes his individual

profit, the supply chain could be worse off as compared to the C&L policy. However, in 37%

of the cases considered, both the supplier and the supply chain are better off by using the

optimal allocation policy as compared to the C&L manipulable policy. These results show

that manipulable fixed pricing policies can significantly deteriorate supplier profits.

Recall that Theorem 4 establishes that a profit-maximizing supplier will always provide

less capacity than under a centralized system; that is, KDT ≤ KC (or, equivalently, KDT/C ≤
1). Col. 6 reports that optimal supplier capacity percentage ranges from 64.7 to 89.3% (an

average of 77.2%). Cachon and Lariviere observe that, under the manipulable policy, the

supplier has an incentive to provide less capacity than a centralized policy. Col. 9 reports

that KDM/C ranges from 46.0 to 90.0% (an average of 72.1%). In what follows, we examine

the sensitivity of the optimal allocation policy to different model parameters.

5.2 The Impact of Capacity Cost on the Performance of the Op-
timal Allocation policy

Everything else being equal, one would expect that as per-unit capacity cost increases,

optimal capacity should decrease under either a centralized system or decentralized system.

Table 1 confirms this expectation. Observe, in particular (Col. 3) that centralized optimal

capacity, KC , decreases from 15.42 to 5.99. More important, since KDT/C ≤ 1 (Col. 6),

KDT decreases more quickly. This is because, in the decentralized system, reduced capacity

increases the supplier’s information rents.1 As a consequence, the decentralization penalty

1In particular, note that if capacity were free, then the supplier would provide unlimited capacity, always
satisfy total retailer orders, and experience no information rents.
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Centralized Decentralized Cachon Linear Comparison
Optimal Optimal allocation Decentralized

vs C&L
Increase in

c πC KC πT
Penalty πDT

Supplier KDT/C πM
Penalty πDM

Supplier KDM/C supplier profit
(πS

DT−πS
DM )

πS
DM

0.1 44.53 15.42 8.38% 79.11% 89.28% 2.40% 0.00% 90.00% Infinity
0.15 43.76 15.09 8.49% 78.90% 88.31% 5.40% 0.00% 85.00% Infinity
0.2 43.02 14.87 8.62% 78.72% 86.84% 9.80% 0.00% 77.00% Infinity
0.25 42.28 14.64 8.72% 78.53% 86.11% 16.60% 0.12% 71.00% 71580%
0.3 41.55 14.44 8.88% 78.40% 84.89% 1.60% 0.10% 90.00% 71197%
0.35 40.83 14.27 8.97% 78.22% 84.36% 31.20% 0.00% 53.00% 71207644%
0.4 40.12 14.09 9.13% 78.11% 83.39% 41.40% 0.00% 46.00% 70984092%
0.45 39.42 13.94 9.24% 77.97% 82.69% 3.90% 0.10% 84.00% 70526%
0.5 38.72 13.84 9.36% 77.84% 81.84% 1.00% 0.50% 89.00% 14023%
0.6 37.36 13.53 9.53% 77.54% 81.14% 7.20% 0.11% 78.00% 69914%
0.7 36.02 13.26 9.77% 77.32% 80.10% 1.10% 0.41% 89.00% 17290%
0.75 35.36 13.12 9.91% 77.24% 79.55% 11.70% 0.11% 71.00% 69068%
0.9 33.41 12.77 10.27% 76.95% 78.05% 17.70% 0.12% 62.00% 68129%
1 32.15 12.53 10.49% 76.76% 77.25% 4.10% 0.73% 80.00% 9723%

1.05 31.53 12.35 10.55% 76.62% 77.41% 25.40% 0.27% 54.00% 33763%
1.2 29.70 12.00 10.92% 76.40% 76.22% 35.10% 0.47% 46.00% 22285%
1.25 29.10 11.86 11.25% 76.50% 75.46% 7.00% 0.97% 73.00% 7456%
1.35 27.93 11.62 11.50% 76.37% 74.80% 3.80% 1.46% 85.00% 4722%
1.4 27.35 11.51 11.67% 76.34% 74.30% 3.30% 0.73% 83.00% 9493%
1.5 26.21 11.25 11.86% 76.17% 74.00% 11.10% 1.35% 65.00% 5504%
1.75 23.48 10.62 12.49% 75.92% 72.87% 5.20% 0.95% 79.00% 7239%
1.8 22.95 10.51 12.86% 76.08% 71.94% 5.10% 1.90% 81.00% 3579%
2 20.90 10.00 13.23% 75.79% 71.44% 24.50% 3.30% 50.00% 2541%

2.1 19.91 9.77 13.67% 75.89% 70.48% 8.10% 1.32% 72.00% 5321%
2.25 18.48 9.32 14.07% 75.81% 70.25% 6.90% 2.58% 77.00% 2612%
2.45 16.65 8.85 14.75% 75.86% 68.77% 10.90% 1.93% 58.00% 3667%
2.7 14.51 8.23 15.16% 75.57% 67.81% 9.50% 3.54% 73.00% 1902%
2.8 13.70 8.02 15.33% 75.48% 67.13% 18.60% 3.00% 56.00% 2521%
3.15 11.05 7.12 15.65% 74.94% 66.13% 13.50% 5.21% 67.00% 1302%
3.6 8.10 5.99 15.81% 74.11% 64.71% 20.00% 8.28% 58.00% 842%

Table 1: Impact of capacity acquisition cost c
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increases from 8.38 to 15.81% (column 4).

5.3 The Impact of the Number of Retailers, N , on the Optimal

Allocation policy

In order to examine the impact of the number of retailers, N, on the performance of the

optimal allocation policy we examined parameterizations of N = 2, 3, 4, and 5 retailers with

uniformly-distributed market potential, θ. Table 2 summarizes the performance/retailer for

three different capacity costs; i.e., c = $0.10, $1.85, and $3.60/unit. By assumption, as the

number of retailers increases, the total market potential increases. In the centralized system

this provides the opportunity to extract higher profit/retailer, πC/N , from the marketplace,

as reported in Col. 3. In the decentralized system with truth-telling, this increase in total

market potential increases competition among the retailers, which permits the supplier to

reduce the information rent/retailer, thereby increasing its share of supply-chain profits as

N increases, as confirmed in Col. 5, and reducing the decentralization penalty, πT
Penalty, as

confirmed in Col. 4. Finally, note (Col. 6) that the optimal supplier capacity ratio, KDT/C,

decreases as N increases.

Centralized Decentralization Suppliers Capacity
Profit/ret Penalty share ratio

c N πC/N πT
Penalty πDT

Supplier KDT/C

0.1 2 9.14 16.40% 73.94% 94.02%
0.1 3 9.15 16.36% 74.18% 88.37%
0.1 4 9.16 16.31% 74.31% 85.09%
0.1 5 9.16 16.29% 74.41% 82.74%
1.85 2 4.56 24.90% 63.99% 63.32%
1.85 3 4.64 22.87% 67.64% 61.30%
1.85 4 4.68 21.71% 69.50% 60.71%
1.85 5 4.71 20.80% 70.48% 60.98%
3.6 2 1.69 30.68% 48.71% 48.99%
3.6 3 1.77 25.58% 61.26% 51.70%
3.6 4 1.81 23.37% 66.21% 53.49%
3.6 5 1.84 22.45% 69.30% 54.48%

Table 2: Impact of number of retailers N
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5.4 The Impact of Increasing Mean Market Potential

Given the initial parameterization of N = 5 retailers with market potential drawn from a

uniform distribution, θ ∈ {4, 5, 6, 7, 8}, we examined the effect of increasing mean market

potential by increasing the lower bound on θ from 2 to 6 (with corresponding changes in the

upper bound) while keeping the number of states and their ordinal probabilities fixed. Hence,

in the first experiment θ ∈ {2, 3, 4, 5, 6}, with mean of 4, while in the last θ ∈ {6, 7, 8, 9, 10},
with a mean of 8. Table 3 provides the results for capacity cost c = $0.10, $1.85, and

$3.60/unit.

In the centralized system, one would expect increasing mean market potential to provide

higher supply-chain profit and increased supplier capacity. This was confirmed (but not

reported here). In the decentralized system with truth-telling, although the supplier experi-

ences the same uncertainty about retailer type, the larger market potential/retailer reduces

its information rent, thereby reducing the decentralization penalty, πT
Penalty, as confirmed in

Col. 3; and increasing its percentage of total supply-chain profit, πT
Supplier, as confirmed in

Col. 4. Note, further (Col. 5) that KDT/C increases as mean market potential increases for

fixed per-unit capacity cost, c.

5.5 The Impact of Increasing the Variance of Market Potential

Given an initial parameterization of N = 5 retailers with five uniformly-distributed values

of market potential, θ ∈ {4, 5, 6, 7, 8}, we examined the effect of market-potential variance

by varying the number of θ’s potential states from 3 to 6 while maintaining the same mean

market potential. More specifically, the first parameterization had 3 states, θ ∈ {5, 6, 7},
while the last had 9 states, θ ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. Table 4 provides the results for

capacity cost c = $0.10, $1.85, and $3.60/unit.

Since in the centralized system the θ’s of the retailers are known, increasing the range of

θ’s provides the centralized system access to higher revenue potential for the same capacity

level. Hence, centralized capacity, KC , and centralized supply-chain profit πC, should in-

crease. This is confirmed in Cols. 3 and 4. However, increasing the range of θ’s increases

information rents in the truth-telling decentralized system, thereby increasing the decentral-

ization penalty, πT
Penalty , (Col. 5) and reducing the supplier’s share of supply-chain profit,

πT
Supplier, (Col. 6). Note (Col. 7) that the supplier capacity ratio, KDT/C also decreases.
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mean Decentralization Suppliers Capacity
demand penalty share ratio

c πT
Penalty πDT

Supplier KDT/C

0.1 4 26.18% 77.04% 78.76%
0.1 5 21.43% 74.33% 80.78%
0.1 6 19.46% 74.41% 82.74%
0.1 7 13.79% 72.78% 84.67%
0.1 8 10.28% 72.83% 86.88%
1.85 4 31.58% 72.13% 56.46%
1.85 5 28.38% 70.41% 57.92%
1.85 6 26.26% 70.48% 60.98%
1.85 7 21.11% 69.75% 64.28%
1.85 8 15.91% 69.47% 68.74%
3.6 4 30.05% 66.40% 54.42%
3.6 5 29.34% 69.03% 53.99%
3.6 6 28.94% 69.30% 54.48%
3.6 7 27.00% 69.12% 56.46%
3.6 8 23.50% 69.04% 60.54%

Table 3: Impact of retailer mean demand

c number of Decentralization Suppliers Capacity
states Penalty share ratio

c πC KC πT
Penalty πDT

Supplier KDT/C

0.1 3 44.26 15.28 4.69% 78.51% 90.61%
0.1 5 45.82 16.06 16.29% 74.41% 82.74%
0.1 7 48.21 16.88 20.24% 72.77% 78.33%
0.1 9 51.45 17.64 22.51% 72.83% 76.54%
1.85 3 22.19 10.37 8.67% 74.34% 75.90%
1.85 5 23.53 10.37 20.80% 70.48% 60.98%
1.85 7 25.53 10.42 24.16% 68.32% 57.29%
1.85 9 28.21 10.64 26.33% 68.05% 55.52%
3.6 3 7.87 6.01 16.72% 75.59% 64.18%
3.6 5 9.20 5.98 22.45% 69.30% 54.48%
3.6 7 11.12 6.24 25.26% 65.59% 50.98%
3.6 9 13.51 6.50 27.27% 63.63% 51.38%

Table 4: Impact of retailer demand variance
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6 Auction mechanisms for implementing the optimal

allocation policy

A common criticism of variable-price allocation mechanisms is the potentially high trans-

action costs imposed by such policies (Cachon and Lariviere, 1999b). In this section, we

first prove that an auction based on purchasing cost bids by retailers can be used to imple-

ment the optimal allocation policy. We then describe an example to illustrate its potential

implementation on the internet.

The auction is based on retailers valuation (revenue) of quantity allocated by the supplier.

Retailers submit purchasing cost bids on the fixed capacity K (in a multi-unit auction), rather

than the supplier dictating a price schedule. Retailers recognize the fixed capacity K and

“probabilistically” anticipate other retailers valuations of allocated quantity.

The mechanics of the auction are as follows:

1. The supplier announces an output allocation mechanism conditional on purchasing-cost

bids submitted by the retailers.

2. Individual retailers submit bids to the supplier which maximize their individual profits.

Individual profits take into account the individual retailers private information, the

suppliers announced allocation policy, and an expectation over other retailers bids.

3. Based on the bids submitted by the retailers, the announced allocation policy is imple-

mented and the retailers pay their announced bid to the supplier.

Theorem 7 Let Q∗(θ) be the optimal allocation mechanism. Then the following auction

implements the allocation Q∗.

1. The supplier announces an output allocation mechanism A(Vi, V−i) based on the pur-

chasing cost bids submitted by retailers.

2. The retailers submit bids V ∗
i which maximize expected revenues minus purchasing cost,

anticipating allocation mechanism A.

3. Allocation mechanism A is implemented based on bids submitted, where

A(Vi, V−i) = Q∗(θ∗(Vi), θ
∗(V−i)) and θ∗(V ) = P ∗−1(V )

We illustrate the auction mechanism with the following example. Consider the 2-retailer

scenario, with downward sloping linear demand, as described in section 4.1, and the following
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parameters. Retailers are independently assigned to be one of five types θ ∈ {4, 5, 6, 7, 8}
from a uniformly distributed prior. Given capacity-acquisition cost is $1.85 per unit, the

optimal capacity for this example is 2.63 units. The supplier posts this capacity and output-

allocation mechanism represented in Table 5.

Retailer 2 bids 0.00 0.70 3.05 7.08 12.29
Retailer 1 bids

0.00 0.00 0.00 0.00 0.00 0.00
0.70 1.00 1.00 0.82 0.32 0.00
3.05 2.00 1.82 1.32 0.82 0.32
7.08 2.63 2.32 1.82 1.32 0.82
12.29 2.63 2.63 2.32 1.82 1.315

Table 5: Allocation Table for Auction Implementation

The interpretation of this table is as follows. If retailer 1 bids $0, he gets 0 units of

capacity, independent of how much player 2 bids. If retailer 1 bids $12.29, then he gets all of

the 2.63 units of capacity, if retailer 2 bids zero. However, if both retailers bid $12.29, then

each receives 1.315 units (half of the available capacity). Note that the allocation table has

the intuitive property that the quantity received by retailer 1 is non-decreasing in retailer

1’s bids, but non-increasing in retailer 2’s bids.

Each retailer, after examining the allocation rule, submits a bid that is optimal for itself.

The allocation table has been constructed such that a retailer with θ = 4 will submit a bid of

$0, while a retailer with θ = 8 will submit a bid of $12.29. Thus, each retailer’s bid indirectly

reveals its type, thereby enabling the supplier to implement the optimal quantity-allocation

policy.

Although, the above example is fairly simple, a similar auction scheme can be easily

posted on the web for the N retailer case. This enables the implementation of the optimal

quantity allocation policy, while keeping transaction costs low.

7 Conclusion

Our goal in examining capacity allocation in a decentralized system from the perspective of

the supplier was to answer the questions posed in the introduction. The answers provided

by our analysis are as follows:
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1. What level of capacity should the supplier provide to maximize its profit, given an im-

plementable profit-maximizing allocation policy?

Given an optimal allocation policy, Theorem 3 establishes the concavity of the supplier’s

profit-maximizing capacity objective under Assumptions 1-3, thereby facilitating the ef-

ficient numerical search for the supplier’s profit-maximizing capacity. Further, Theorem

4 proves that a profit-maximizing supplier’s optimal capacity, K∗, in the decentralized

system (with information asymmetry) will always be less than or equal to the capacity

which maximizes supply-chain profit in a centralized system (with symmetric informa-

tion). The optimal capacity for specific business scenarios was numerically computed

in section 5.

2. What forms do optimal (i.e., supplier profit-maximizing) allocation polices take in ex-

ample business scenarios?

For example, when retailers face deterministic linear demand, Theorem 5 proves the

optimality of the linear allocation mechanism if supplier’s prior on the intercept (θ) of

the demand curve is a uniform distribution on [0, a]. We also show (Theorems 6 and 7)

that the linear or proportional allocation rules are optimal for large classes of problems

when retailers are “newsvendors”.

3. Is supplier profit sensitive to the allocation policy it employs?

In our numerical study, supplier profit increased a minimum of 842% by using the op-

timal allocation policy compared to the manipulable fixed-price linear allocation policy

examined by Cachon and Lariviere. Of course, this improvement is not necessarily

representative of the improvement to be expected from other parameterizations of the

same business model or from a different business model. However, given any existing

allocation policy, the supplier can never be worse off, assuming that an implementable

optimal policy exists. And, as our numerical results demonstrate, the resulting im-

provement in profit can be quite considerable. Hence, we conclude that the choice of

the pricing and allocation policy does matter. In particular, both supplier and supply-

chain profit can increase significantly if a manipulable fixed-price allocation policy is

replaced by the optimal truth-telling allocation policy.

4. Are there practical ways of implementing the optimal allocation policy to reduce trans-

action costs?

Given the potential for substantially improved supplier profit, two questions remain re-
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garding the implementability of the optimal (i.e., supplier profit-maximizing) allocation

policy. First, whether the transactions cost to implement the optimal allocation policy

might be higher than the increased profit it provides. Second, whether the history of

the specific industry, and the corresponding expectations of the retailers, permit the

supplier to implement such a policy, even if it paid for itself. To address the second

question first, history and retailer expectations can be strong defenders of the status

quo, even though the status quo doesn’t serve either the supplier or the retailers very

well. Witness the US auto industry’s heavy reliance on turn-and-earn oriented poli-

cies even though such policies serve neither sector very well (see Cachon and Lariviere

(1999a)). With respect to the cost of implementation, although conventional implemen-

tations might be both expensive to develop and time-consuming to use, we believe that

web-based auction mechanisms, like the one we describe for the deterministic-demand

business scenario, would be both fast and inexpensive to use, provided all parties were

experienced web users. And, although the initial development cost for a specific busi-

ness scenario might be high, existing web-auction providers might well be willing to

bear this cost and charge suppliers on a fee-for-service basis.

Our model framework can be extended in several ways in future research. The role of

transaction costs in capacity-allocation problems needs to be explored further. Our model

examined a single period scenario. An obvious extension would be to extend it to a multi-

period setting where capacity may have to be allocated in each period, based on each period’s

demand. In this setting, the optimal allocation policy would depend on whether excess

demand is backordered or lost, and whether supplier capacity (i.e., inventory) can be carried

between periods. Our model assumed that the N retailers were independent. It would also

be interesting to extend this framework to the case where the private information parameters

of the N retailers are correlated.
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APPENDIX

Proofs

Proof of Theorem 1: Suppose conditions (2) and (3) hold. Then by (3), expected profit

to retailer i with parameter θi reporting value x is

πi(x, θi) = E−i[R(Q(x, θ−i), θi) − R(Q(x, θ−i), x) +
∫ x

θ
Rθ(Q(θ, θ−i), θ)dθ]

= E−i[
∫ θi

x
Rθ(Q(x, θ−i), θ)dθ +

∫ x

θ
Rθ(Q(θ, θ−i), θ)dθ]

≤ E−i[
∫ θi

x
Rθ(Q(θ, θ−i), θ)dθ +

∫ x

θ
Rθ(Q(θ, θ−i), θ)dθ] by (2)

= E−i[
∫ θi

θ
Rθ(Q(θ, θ−i), θ)dθ]
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= πi(θi, θi)

Thus, if conditions (2) and (3) hold, then πi(x, θi) ≤ πi(θi, θi), implying truth-telling is the

optimal strategy for retailer i, in a Bayes-Nash equilibrium.

Now let (P (θ), Q(θ)) be incentive compatible and define π(θ) = π(θ, θ). Then π(θ) ≥
π(θ′, θ) for all θ, θ′ ∈ [θ, θ] implies

π(θ, θ) − π(θ, θ′) ≥ π(θ, θ)− π(θ′, θ′) ≥ π(θ′, θ) − π(θ′, θ′)

Hence,

E−i[R(Q(θ, θ−i), θ)−R(Q(θ, θ−i), θ
′)] ≥ π(θ, θ)−π(θ′, θ′) ≥ E−i[R(Q(θ′, θ−i), θ)−R(Q(θ′, θ−i), θ

′)]

Divide both sides by θ − θ′ and take limits as θ′ → θ,

dπ(θ)

dθ
= E−i[Rθ(Q(θ, θ−i), θ)]

Since π(θ) = 0, by integration

π(θi) = E−i[
∫ θ

θ
Rθ(Q(θ, θ−i), θ)dθ]

Thus from the definition of the retailer’s profit function

P (θi) = E−i[R(Q(θi, θ−i), θi) −
∫ θi

θ
Rθ(Q(θ, θ−i), θ)dθ]

Thus, incentive compatibility implies condition (3) holds. Given πi(x, θi) = E−i[R(Q(x, θ−i), θi)−
P (x)], and using P (θi) from above,

π(θi) − π(x, θi) =
∫ θi

x
E−iRθ(Q(θ, θ−i), θ)dθ −

∫ θi

x
E−iRθ(Q(x, θ−i), θ)dθ

Since π(θi) ≥ π(x, θi), condition (2) holds. Also, by assumption, Rθ ≥ 0, implying π(θi) ≥ 0

for all θi ∈ [θ, θ]. 2

Proof of Theorem 2: See Maskin and Riley (1989).

Proof of Theorem 4: The first order condition for the centralized problem can be written

as

RQ(Q(θi, θ−i), θi) = λc(θ,K)

while the first order condition for the decentralized problem is

RQ(Q(θi, θ−i), θi) − RQθ(Q(θi, θ−i), θi)H(θi) = λ(θ,K)
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Note that we have written the shadow price of capacity explicitly as function of θ and K.

Now since RQθ ≥ 0, and H(θ) ≥ 0, it is immediately clear that λc(θ,K) ≥ λ(θ,K). Hence

Eθ[λc(θ,K)] ≥ Eθ[λ(θ,K)]

Now, the expected shadow price at optimal capacity is equal to the marginal cost of capacity

c. Hence

Eθ[λc(θ,K
∗)] ≥ Eθ[λ(θ,K∗)] = c

Since λ is non-increasing in K, to ensure Eθ[λc(θ,K
∗
c )] = c, we have K∗

c ≥ K∗. 2

Proof of Theorem 5: The first order condition

G(Q, θi) = RQ(Q, θi) − RQθ(Q, θi)H(θi) = λ − µi

is equivalent to

G(Q − τ (θi), θ
∗) = λ − µi

Hence Q∗
i (θi) = Q∗(θ∗)+τ (θi). Assuming that when capacity binds the base type θ∗ receives

stock, it must be that
n∑

i=1

Q∗
i (θi) = nQ∗(θ∗) +

n∑

i=1

τ (θi) = K

which yields Q∗(θ∗) = 1
n
{K−∑n

i=1 τ (θi)}. Hence linear allocation is the optimal mechanism.

2

Proof of Theorem 6:The first order condition

G(Q, θi) = RQ(Q, θi) − RQθ(Q, θi)H(θi) = λ − µi

is equivalent to

G(
Q

τ (θi)
, θ∗) = λ − µi

Hence Q∗
i (θi) = τ (θi)Q

∗(θ∗). If capacity availability binds, we have Q∗(θ∗) = K∑N

i=1
τ(θi)

.

Hence proportional allocation is optimal. 2

Proof of Theorem 7: Using equation (3), the optimal pricing rule for the supplier can be

written as:

P ∗(θi) = E−i[R(Q∗(θi, θ−i), θi) −
∫ θi

θ
Rθ(Q

∗(θ, θ−i), θ)dθ]

Hence
δP ∗(θi)

δθi
= E−i[RQ(Q∗(θi, θ−i), θi)

δQ∗

δθi
] ≥ 0 (19)
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since Q∗ is increasing in θi. Hence, P ∗−1 used in Theorem 8, is well defined. To prove

theorem 8, we show that the optimal strategy for retailer i is to bid P ∗(θi), in a Bayes-Nash

equilibrium. The objective function for each retailer in a bidding auction, defined by theorem

8, can be written as

max
Vi

E−i[R(Q∗(P ∗−1(Vi), θ−i), θi) − Vi]

The first order necessary condition is

E−i[RQ(Q∗(P ∗−1(Vi), θ−i), θi)
δQ∗

δP ∗−1

δP ∗−1

δVi
] = 1

Using equation (19), it is easy to see that Vi = P ∗(θi) satisfies the above condition. Hence,

it is optimal for each retailer to bid Vi = P ∗(θi) in a Bayes-Nash equilibrium. Also, by

definition of the allocation function A(Vi, Vi), the optimal allocation policy is implemented

if each retailer bids P ∗(θi). 2
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